Часть 1 | Часть 2 | Часть 3 | Часть 4 | Часть 5 | Часть 6 | Часть 7 | Часть 8 | Часть 9 | Часть 10
СНиП 2.04.03-85 Строительные нормы и правила. Канализация. Наружные сети и сооружения. Часть 8
6.262. При обработке воды коагулянтами необходимо поддерживать оптимальное значение
Для городских вод при
6.263. Приготовление, дозирование и ввод реагентов в сточную воду надлежит предусматривать согласно СНиП 2.04.02-84.
6.264. Смешение реагентов со сточной водой следует предусматривать в гидравлических смесителях или в подводящих воду трубопроводах согласно СНиП 2.04.02-84.
Допускается применять смешение в механических смесителях или в насосах, подающих сточную воду на очистные сооружения.
В случае использования в качестве реагентов железного купороса следует использовать аэрируемые смесители, аэрируемые песколовки или преаэраторы, обеспечивающие перевод закиси железа в гидрат окиси. Время пребывания в смесителе в этом случае должно быть не менее 7 мин, интенсивность подачи воздуха 0,7-0,8 м
6.265. В камерах хлопьеобразования надлежит применять механическое или гидравлическое перемешивание.
Рекомендуется использовать камеры хлопьеобразования, состоящие из отдельных отсеков с постепенно уменьшающейся интенсивностью перемешивания.
6.266. Время пребывания в камерах хлопьеобразования следует принимать, мин: при отделении скоагулированных взвешенных веществ отстаиванием для коагулянтов - 10-15, для флокулянтов - 20-30, при очистке сточной воды флотацией для коагулянтов - 3-5, для флокулянтов - 10-20.
6.267. Интенсивность смешения сточных вод с реагентами в смесителях и камерах хлопьеобразования следует оценивать по величине среднего градиента скорости, которая составляет,
для смесителей с коагулянтами - 200, с флокулянтами - 300-500;
для камер хлопьеобразования: при отстаивании для коагулянтов и флокулянтов - 25-50; при флотации - 50-75.
6.268. Отделение скоагулированных примесей от воды следует осуществлять отстаиванием, флотацией, центрифугированием или фильтрованием, проектируемыми согласно настоящим нормам.
Обезвреживание циансодержащих сточных вод
6.269. Для обезвреживания сильнотоксических цианидов (простых цианидов, синильной кислоты, комплексных цианидов цинка, меди, никеля, кадмия) следует применять окисление их реагентами, содержащими активный хлор при величине
6.270. К реагентам, содержащим активный хлор, относятся хлорная известь, гипохлориты кальция и натрия, жидкий хлор.
6.271. Дозу активного хлора надлежит принимать из расчета 2,73 мг на 1 мг цианидов цинка, никеля, кадмия, синильной кислоты и простых цианидов и 3,18 мг/мг - для комплексных цианидов меди с избытком не менее 5 мг/л.
6.272. Концентрация рабочих растворов реагентов должна быть 5-10% по активному хлору.
6.273. Для обработки циансодержащих сточных вод следует, как правило, предусматривать установки периодического действия, состоящие не менее чем из двух камер реакции.
Время контакта сточных вод с реагентами 5 мин - при окислении простых цианидов и 15 мин - при окислении комплексных цианидов.
6.274. После обработки сточных вод активным хлором их необходимо нейтрализовать до
6.275. Объем осадка влажностью 98% при двухчасовом отстаивании составляет 5% объема обрабатываемой воды.
При введении перед отстойниками полиакриламида (доза 20 мг/л 0,1%-ного раствора) время отстаивания надлежит сокращать до 20 мин.
Обезвреживание хромсодержащих сточных вод
6.276. Для обезвреживания хромсодержащих сточных вод следует применять бисульфит или сульфат натрия при
6.277. Дозу бисульфита натрия надлежит принимать равной 7,5 мг на 1 мг шестивалентного хрома при концентрации его до 100 мг/л и 5,5 мг/мг - при концентрации хрома свыше 100 мг/л.
6.278. Перед подачей обезвреженных сточных вод на отстойники их надлежит нейтрализовать известковым молоком до
Биогенная подпитка
6.279. Для биогенной подпитки в качестве биогенных добавок следует принимать:
фосфорсодержащие реагенты - суперфосфат, ортофосфорную кислоту;
азотсодержащие реагенты - сульфат аммония, аммиачную селитру, водный аммиак, карбамид;
азот- и фосфорсодержащие реагенты - диаммонийфосфат технический, аммофос.
6.280. Концентрацию рабочих растворов надлежит принимать до 5% по
Сооружения для адсорбционной очистки сточных вод
Общие указания
6.281. Для глубокой очистки сточных вод от растворенных органических загрязняющих веществ методом адсорбции в качестве сорбента надлежит применять активные угли.
6.282. Активный уголь следует применять в виде слоя загрузки плотного (движущегося или неподвижного), намытого на подложку из другого материала или суспензии в сточной воде.
Адсорберы с плотным слоем загрузки активного угля
6.283. В качестве адсорберов надлежит применять конструкции безнапорных открытых и напорных фильтров с загрузкой в виде плотного слоя гранулированного угля крупностью 0,8-5 мм.
6.284. Содержание взвешенных веществ в сточных водах, поступающих на адсорберы, не должно превышать 5 мг/л.
6.285. Площадь загрузки адсорбционной установки
где
При выключении одного адсорбера скорость фильтрования на остальных не должна увеличиваться более чем на 20%.
6.286. Число последовательно работающих адсорберов
где
здесь
где
здесь
где
здесь
6.287. Потери напора в слое гранулированного угля при крупности частиц загрузки 0,8-5 мм надлежит принимать не более 0,5 м на 1 м слоя загрузки.
6.288. Выгрузку активного угля из адсорбера следует предусматривать насосом, гидроэлеватором, эрлифтом и шнеком при относительном расширении загрузки на 20-25%, создаваемом восходящим потоком воды со скоростью 40-45 м/ч.
В напорных адсорберах допускается предусматривать выгрузку угля под давлением не менее 0,3 МПа (3 кгс/см
6.289. Металлические конструкции, трубопроводы, арматура и емкости, соприкасающиеся с влажным углем, должны быть защищены от коррозии.
Адсорберы с псевдоожиженным слоем активного угля
6.290. Сточные воды, поступающие в адсорберы с псевдоожиженным слоем, не должны содержать взвешенных веществ свыше 1 г/л при гидравлической крупности не более 0,3 мм/с. Взвешенные вещества, выносимые из адсорберов, и мелкие частицы угля надлежит удалять после адсорбционных аппаратов.
6.291. Адсорбенты с насыпным весом свыше 0,7 т/м
6.292. По высоте адсорберов 0,5-1,0 м следует устанавливать секционирующие решетки с круглой перфорацией диаметром 10-20 мм и долей живого сечения 10-15%. Оптимальное число секций -три-четыре.
6.293. Скорость восходящего потока воды в адсорбере надлежит принимать 30-40 м/ч размерами частиц 1-2,5 мм для активных углей и 10-20 м/ч для углей размерами частиц 0,25-1 мм.
6.294. Дозу активного угля для очистки воды следует определять экспериментально.
Сооружения для ионообменной очистки сточных вод
6.295. Ионообменные установки следует применять для глубокой очистки сточных вод от минеральных и органических ионизированных соединений и образования очищенной воды в производстве и утилизации ценных компонентов.
6.296. Сточные воды, подаваемые на установку, не должны содержать: солей - свыше 3000 мг/л; взвешенных веществ -свыше 8 мг/л; ХПК не должна превышать 8 мг/л.
При большем содержании в сточной воде взвешенных веществ и большей ХПК необходимо предусматривать ее предварительную очистку.
6.297. Объем катионита
где
здесь
6.298. Площадь катионитовых фильтров
где
При значительных отклонениях площадей, рассчитанных по формулам (91) и (92), следует в формуле (89) проводить корректировку числа регенераций
6.299. Скорость фильтрования воды
до 5 мг · экв./л - 20;
5-15 “ - 15;
15-20 “ - 10;
свыше 20 “ - 8. 6.300. Число катионитовых фильтров первой ступени следует принимать: рабочих - не менее двух, резервных - один.
6.301. Потери напора в напорных катионитовых фильтрах надлежит принимать по табл. 56.
Таблица 56
6.302. Интенсивность подачи воды при взрыхлении катионита следует принимать 3-4 л/(с · м
6.303. Регенерацию катионитовых фильтров первой ступени надлежит производить 7-10%-ными растворами кислот (соляной, серной). Скорость пропуска регенерационного раствора кислоты через слой катионита не должна превышать 2 м/ч. Последующая отмывка катионита осуществляется ионированной водой, пропускаемой через слой катионита сверху вниз со скоростью 6-8 м/ч. Удельный расход составляет 2,5-3 м на 1 м
Первая половина объема отмывочной воды сбрасывается в бак для приготовления регенерирующего раствора кислоты, вторая половина - в бак воды для взрыхления катионита.
6.304. Водород-катионитовые фильтры второй ступени следует рассчитывать согласно пп. 6.297-6.301 и исходя из концентрации катионов щелочных металлов и аммония.
6.305. Регенерацию катионитовых фильтров второй ступени следует производить 7-10%-ным раствором серной кислоты. Удельный расход кислоты составляет 2,5 мг · экв на 1 мг · экв рабочей обменной емкости катионита.
6.306. Объем анионита
где
где
6.307. Площадь фильтрации
где
здесь
6.308. Регенерацию анионитовых фильтров первой ступени надлежит производить 4-6%-ными растворами едкого натра, кальцинированной соды или аммиака; удельный расход реагента на регенерацию равен 2,5-3 мг · экв на 1 мг · экв сорбированных анионов (на 1 мг · экв рабочей обменной емкости анионита).
В установках с двухступенчатым анионированием для регенерации анионитовых фильтров первой ступени следует использовать отработанные растворы едкого натра от регенерации анионитовых фильтров второй ступени.
6.309. Загрузку анионитовых фильтров второй ступени следует производить сильноосновным анионитом, высота загрузки 1,5-2 м. Расчет анионитовых фильтров второй ступени следует производить согласно пп. 6.306 и 6.307.
Скорость фильтрования обрабатываемой воды следует принимать 12-20 м/ч.
6.310. Регенерацию анионитовых фильтров второй ступени надлежит производить 6-8%-ным раствором едкого натра. Скорость пропускания регенерирующего раствора должна составлять 1-1,5 м/ч. Удельный расход едкого натра на регенерацию 7-8 г · экв на 1 г · экв сорбированных ионов (на 1 г · экв рабочей обменной емкости анионита).
6.311. Фильтры смешанного действия (ФСД) следует предусматривать после одно- или двухступенчатого ионирования воды для глубокой очистки воды и регулирования величины
6.312. Расчет ФСД производится в соответствии с пп. 6.297-6.301, 6.306 и 6.307. Скорость фильтрования - до 50 м/ч.
6.313. Регенерацию катионита следует производить 7-10%-ным раствором серной кислоты, анионита - 6-8%-ным раствором едкого натра. Скорость пропускания регенерирующих растворов должна составлять 1-1,5 м/ч. Отмывку ионитов в фильтрах необходимо производить обессоленной водой. В процессе отмывки иониты следует перемешивать сжатым воздухом.
6.314. Аппараты, трубопроводы и арматура установок ионообменной очистки и обессоливания сточных вод должны изготавливаться в антикоррозионном исполнении.
6.315. Регенерацию ионитов следует производить с фракционным отбором элюатов. Элюат следует делить на 2-3 фракции.
Наиболее концентрированные по извлекаемым компонентам фракции элюата следует направлять на обезвреживание, переработку, утилизацию, наименее концентрированные по извлекаемым компонентам фракции - направлять на повторное использование в последующих циклах регенерации.
Сооружения для электрохимической очистки сточных вод
6.316. Аппараты для электрохимической очистки сточных вод могут быть как с не подвергающимися (электролизеры), так и с подвергающимися электролитическому растворению анодами (электрокоагуляторы).
Электролизеры для обработки циансодержащих сточных вод
6.317. Для обработки циансодержащих сточных вод надлежит применять электролизеры с анодами, не подвергающимися электролитическому растворению (графит, титан с металлооксидным покрытием и др.), и стальными катодами.
6.318. Электролизеры следует применять при расходе сточных вод до 10 м
6.319. Корпус электролизера должен быть защищен изнутри материалами, стойкими к воздействию хлора и его кислородных соединений, оборудован вентиляционным устройством для удаления выделяющегося газообразного водорода.
6.320. Величину рабочего тока
где
2,06 - коэффициент удельного расхода электричества, А · ч/г;
6.321. Общую поверхность анодов
где
Общее число анодов
где
Электрокоагуляторы с алюминиевыми электродами
6.322. Электрокоагуляторы с алюминиевыми пластинчатыми электродами следует применять для очистки концентрированных маслосодержащих сточных вод (отработанных смазочно-охлаждающих жидкостей), образующихся при обработке металлов резанием и давлением, с концентрацией масел не более 10 г/л.
При обработке сточных вод с более высоким содержанием масел необходимо предварительное разбавление предпочтительно кислыми сточными водами. Остаточная концентрация масел в очищенных сточных водах должна быть не более 25 мг/л.
6.323. При проектировании электрокоагуляторов необходимо определять:
площадь электродов,
где
токовую нагрузку
длину ребра электродного блока
где
Удельный расход алюминия на очистку сточной воды
6.324. После электрохимической обработки сточные воды следует отстаивать не менее 60 мин.
6.325. Предварительное подкисление сточных вод следует производить соляной (предпочтительно) или серной кислотой до величины
6.326. Пластинчатые электроды следует собирать в виде блока. Электрокоагулятор должен быть снабжен водораспределительным устройством, приспособлением для удаления пенного продукта, устройствами для выпуска очищенной воды и шлама, прибором для контроля уровня воды, устройством для реверсирования тока.
Примечание. Электрокоагулятор снабжается устройством для реверсирования тока лишь в случае его отсутствия в источнике постоянного тока.
6.327. В качестве электродного материала следует применять алюминий или его сплавы, за исключением сплавов, содержащих медь.
6.328. Расчет производительности вытяжной вентиляционной системы следует производить исходя из количества выделяющегося водорода, при этом производительность вентилятора
где
Таблица 57
Электрокоагуляторы со стальными электродами
6.329. Электрокоагуляторы со стальными электродами следует применять для очистки сточных вод предприятий различных отраслей промышленности от шестивалентного хрома и других металлов при расходе сточных вод не более 50 м
6.330. Величина
шестивалентного хрома, ионов меди и цинка:
4-6 при концентрации хрома 50-100 мг/л;
5-6 " " " 20-50 ";
6-7 " " " менее 20 "; шестивалентного хрома, никеля и кадмия:
5-6 при концентрации хрома свыше 50 мг/л;
6-7 " " " менее 50 "; ионов меди, цинка и кадмия (при отсутствии шестивалентного хрома) - свыше 4,5;
ионов никеля (при отсутствии шестивалентного хрома) - свыше 7.
6.331. Корпус электрокоагулятора должен быть защищен изнутри кислотостойкой изоляцией и оборудован вентиляционным устройством.
6.332. При проектировании электрокоагуляторов надлежит принимать:
анодную плотность тока - 150-250 А/м
время пребывания сточных вод в электрокоагуляторе - до 3 мин;
расстояние между соседними электродами - 5-10 мм;
скорость движения сточных вод в межэлектродном пространстве - не менее 0,03 м/с;
удельный расход электричества для удаления из сточных вод 1 г
удельный расход металлического железа для удаления из сточных вод 1 г шестивалентного хрома - 2-2,5 г; удельный расход металлического железа для удаления 1 г никеля, цинка, меди, кадмия - соответственно 5,5-6; 2,5-3; 3-3,5 и 4-4,5 г.
6.333. При наличии в сточных водах одного компонента величину тока
где
При наличии в сточных водах нескольких компонентов и суммарной концентрации ионов тяжелых металлов менее 50% концентрации шестивалентного хрома величину тока надлежит определять по формуле (104), причем в формулу подставлять значения
6.334. Общую поверхность анодов
где
При суммарной концентрации шестивалентного хрома и ионов тяжелых металлов в сточных водах до 80 мг/л, в интервалах 80-100, 100-150 и 150-200 мг/л анодную плотность тока следует принимать соответственно 150, 200, 250 и 300 А/м
6.335. Поверхность одного электрода
где
6.336. Общее необходимое число электродных пластин
Общее число электродных пластин в одном электродном блоке должно быть не более 30. При большем расчетном числе пластин необходимо предусмотреть несколько электродных блоков.
6.337. Рабочий объем электрокоагулятора
где
Расход металлического железа для обработки сточных вод
где
При одновременном присутствии в сточных водах нескольких компонентов и суммарной концентрации ионов тяжелых металлов менее 50% концентрации шестивалентного хрома расход металлического железа для обработки сточных вод надлежит определять по формуле (109), в которую подставляются значения
При одновременном присутствии в сточных водах нескольких компонентов и суммарной концентрации ионов тяжелых металлов свыше 50% концентрации шестивалентного хрома расход металлического железа надлежит определять по формуле (109) с коэффициентом 1,2, а
Сооружения для обработки осадка сточных вод
Общие указания
6.338. Осадок, образующийся в процессе очистки сточных вод (сырой, избыточный активный ил и др.), должен подвергаться обработке, обеспечивающей возможность его утилизации или складирования. При этом необходимо учитывать народнохозяйственную эффективность утилизации осадка и газа метана, организацию складирования неутилизируемых осадков и очистку сточных вод, образующихся при обработке осадка.
6.339. Выбор методов стабилизации, обезвоживания и обезвреживания осадка должен определяться местными условиями (климатическими, гидрогеологическими, градостроительными, агротехническими и пр.), его физико-химическими и теплофизическими характеристиками, способностью к водоотдаче.
6.340. При обосновании по рекомендациям специализированных научно-исследовательских организаций допускается совместная обработка обезвоженных осадков и твердых бытовых отходов на территории очистных сооружений канализации или мусороперерабатывающих заводов.
6.341. Надлежит предусматривать использование обработанных осадков городских и близких к ним по составу производственных сточных вод в качестве органоминеральных удобрений.
Уплотнители и сгустители осадка перед обезвоживанием или сбраживанием
6.342. Уплотнители и сгустители следует применять для повышения концентрации активного ила. Допускается подача в них иловой смеси их аэротенков, а также совместное уплотнение сырого осадка и избыточного активного ила.
Для этой цели допускается применение илоуплотнителей гравитационного типа (радиальных, вертикальных, горизонтальных), флотаторов и сгустителей.
Данные по проектированию уплотнителей аэробно стабилизированных осадков приведены в п. 6.367.
6.343. При проектировании радиальных и горизонтальных илоуплотнителей надлежит принимать:
выпуск уплотненного осадка под гидростатическим напором не менее 1 м;
илососы или илоскребы для удаления осадка;
подачу иловой воды из уплотнителей в аэротенки;
число илоуплотнителей не менее двух, причем оба рабочие.
6.344. Данные для расчета гравитационных илоуплотнителей следует принимать по табл. 58.
Таблица 58
6.345. Для флотационного сгущения активного ила надлежит применять метод напорной флотации с использованием резервуаров круглой или прямоугольной формы. Флотационное уплотнение следует производить как при непосредственном насыщении воздухом объема ила, так и с насыщением рециркулирующей части осветленной воды.
Влажность уплотненного активного ила в зависимости от типа флотатора и характеристики ила составляет 94,5-96,5%.
6.346. Расчетные параметры и схемы флотационных установок надлежит принимать по данным научно-исследовательских организаций.
Метантенки
6.347. Метантенки следует применять для анаэробного сбраживания осадков городских сточных вод с целью стабилизации и получения метансодержащего газа брожения, при этом необходимо учитывать состав осадка, наличие веществ, тормозящих процесс сбраживания и влияющих на выход газа.
Совместно с канализационными осадками допускается подача в метантенки других сбраживаемых органических веществ после их дробления (домового мусора, отбросов с решеток, производственных отходов органического происхождения и т. п.).
6.348. Для сбраживания осадков в метантенках допускается принимать мезофильный (Т=33 °С) либо термофильный (Т=53 °С) режим. Выбор режима сбраживания следует производить с учетом методов последующей обработки и утилизации осадков, а также санитарных требований.
6.349. Для поддержания требуемого режима сбраживания надлежит предусматривать:
загрузку осадка в метантенки, как правило, равномерную в течение суток;
обогрев метантенков острым паром, выпускаемым через эжектирующие устройства, либо подогрев осадка, подаваемого в метантенк, в теплообменных аппаратах. Необходимое количество тепла следует определять с учетом теплопотерь метантенков в окружающую среду.
6.350. Определение вместимости метантенков следует производить в зависимости от фактической влажности осадка по суточной дозе загрузки, принимаемой для осадков городских сточных вод по табл. 59, а для осадков производственных сточных вод -на основании экспериментальных данных; при наличии в сточных водах анионных поверхностно-активных веществ (ПАВ) суточную дозу загрузки надлежит проверять согласно п. 6.351.
Таблица 59
6.351. При наличии в сточных водах ПАВ величину суточной дозы загрузки
где
40 - для алкилбензолсульфонатов с прямой алкильной цепью;
85 - для других "мягких" и промежуточных анионных ПАВ;
65 - для анионных ПАВ в бытовых сточных водах.
Если значение суточной дозы, определенное по формуле (110), менее указанного в табл. 59 для заданной влажности осадка, то вместимость метантенка необходимо откорректировать с учетом дозы загрузки, если равно или превышает - корректировка не производится.
Таблица 60
6.352. Распад беззольного вещества загружаемого осадка
где
|
Часть 1 | Часть 2 | Часть 3 | Часть 4 | Часть 5 | Часть 6 | Часть 7 | Часть 8 | Часть 9 | Часть 10
Хотите оперативно узнавать о новых публикациях нормативных документов на портале? Подпишитесь на рассылку новостей!