Часть 1 | Часть 2 | Часть 3 | Часть 4 | Часть 5 | Часть 6 | Часть 7
СНиП 2.05.06-85*. Магистральные трубопроводы. Часть 7
12.4*. Глубину заложения трубопровода до верха трубы следует принимать не менее 1,5 м. 12.5. В случае одновременного строительства нескольких трубопроводов диаметром до 150 мм включ. допускается их укладка в одной траншее на расстоянии не менее 0,5 м друг от друга. При этом расстояние между объектом и ближайшим к нему трубопроводом устанавливается как для трубопровода диаметром 150 мм. 12.6*. Участки трубопроводов, прокладываемые на местности, расположенной на одинаковых отметках или выше населенных пунктов, зданий и сооружений, указанных в поз. 1—4 табл. 20*, относятся к категории В в пределах проекции объекта на трубопровод и примыкающих к проекции с обеих сторон участков длиной, равной соответствующим минимальным расстояниям, указанным в табл. 20*. Вдоль этих участков должны предусматриваться канавы для отвода СУГ в безопасное место в случае разлива, если отсутствуют естественные преграды. 12.7. Запорную арматуру, предусматриваемую к установке на трубопроводах согласно п. 4.12, следует размещать непосредственно у границ участка I категории. 12.8*. В качестве линейной запорной арматуры необходимо предусматривать арматуру бессальниковой конструкции, предназначенную для бесколодезной установки. 12.9. Запорная арматура должна быть стальной и предназначаться для соединения с трубопроводами при помощи сварки. Применение фланцевой арматуры допускается только для подключения трубопроводов к оборудованию, а также к устройствам, используемым при производстве ремонтных работ. Затворы запорной арматуры должны отвечать первому классу герметичности по ГОСТ 9544—93. 12.10. Расстояние между линейной запорной арматурой, устанавливаемой на трубопроводе, должно быть не более 10 км. 12.11*. Линейная запорная арматура, а также запорная арматура, устанавливаемая у границ участков категории В, должна иметь дистанционное управление согласно нормам технологического проектирования. При этом для участков, оговоренных в п. 12.6*, должно предусматриваться автоматизированное отключение запорной арматуры в случае утечки СУГ. Методы обнаружения утечек регламентируются нормами технологического проектирования. 12.12*. При параллельной прокладке трубопроводов узлы линейной запорной арматуры должны располагаться со смещением относительно друг друга не менее чем на 50 м. 12.13*. Каждый узел линейной запорной арматуры должен иметь обвязку трубопроводами диаметром 100-150 мм, обеспечивающую возможность перепуска и перекачки СУГ из одного участка в другой и подключения инвентарного устройства утилизации. 12.14. Не допускается для трубопроводов сжиженных углеводородных газов устройство колодцев для сбора продукта из футляров, предусматриваемых на переходах через железные и автомобильные дороги. 12.15*. Трубопроводы диаметром 150 мм и более должны оснащаться узлами приема и пуска очистных устройств. Места расположения этих узлов устанавливаются проектом в зависимости от конкретного профиля трассы трубопровода, но не более 100 км друг от друга. При параллельной прокладке трубопроводов, узлы приема и пуска средств очистки и диагностики на соседних трубопроводах должны быть смещены относительно друг друга на 150 м. Освобождение от СУГ камер пуска и приема средств очистки и диагностики производится в соответствии с нормами технологического проектирования. 12.16. Все элементы трубопроводов, оснащенных узлами приема и пуска очистных устройств, должны быть равнопроходными. 12.17. Пункты дистанционного управления запорными органами узлов приема и пуска очистных устройств должны размещаться за пределами границы, определяемой радиусом, равным расстояниям, указанным в поз. 3 табл. 20* (для узла пуска — в направлении движения очистного устройства, для узла приема — в направлении, противоположном движению очистного устройства). 12.18*. Насосные станции, размещенные на расстоянии менее 2000 м от зданий и сооружений, должны располагаться на более низких отметках по отношению к этим объектам. 12.19. Головные насосные станции следует располагать, как правило, на площадках заводов-поставщиков, используя емкости, системы энерго- и водоснабжения и другие вспомогательные службы этих предприятий. 12.20. Промежуточные насосные станции должны располагаться на специально отведенных территориях с учетом требований норм технологического проектирования. Размещать насосные станции перед переходами через реки с шириной в межень свыше 200 м не допускается. 12.21*. Минимальное расстояние от насосной станции до населенных пунктов, отдельных зданий и сооружений следует принимать по табл. 20* как для трубопровода, к которому относится насосная станция. 12.22. Запорная арматура на отводах от насосов к всасывающим и нагнетательным коллекторам должна предусматриваться с дистанционным управлением и размещаться: для оперативной работы — внутри здания насосной станции, для аварийных отключений - снаружи, на расстоянии не менее 3 м и не более 50 м от стены здания насосной. 12.23. Факел для сжигания газов при продувке резервуаров, насосов и трубопроводов насосной станции должен иметь высоту не менее 10 м и располагаться от ближайшего здания, сооружения, машины или аппарата насосной станции на расстоянии, устанавливаемом исходя из допустимого воздействия теплового потока на эти объекты, но не менее 60 м. 12.24. Трубопроводы насосных станций в пределах промышленных площадок следует прокладывать надземно на отдельно стоящих опорах или эстакадах. При этом всасывающие трубопроводы необходимо прокладывать с уклоном к насосам, а нагнетательные — от насосов. На трубопроводах не должно быть изгибов в вертикальной плоскости, препятствующих свободному стоку продукта. 12.25. Узлы подключения трубопровода к промежуточным насосным станциям должны оборудоваться дистанционно управляемой арматурой для отключения насосных от трубопровода без прекращения его работы.
Пункты 12.26.-12.29 исключить.
12.30. Минимальное давление в любой точке трубопровода (с целью предотвращения образования двухфазного потока) должно быть выше упругости паров продукта на 0,5 МПа (5 кгс/см2) . 12.31*. Необходимость установки опознавательных столбиков (знаков) и их оформление на переходах трубопроводов через железные дороги общей сети решается по согласованию с МПС РФ. 12.32*. Система автоматики, безопасности и управления процессом транспортирования СУГ должна предусматриваться в соответствии с нормами технологического проектирования. 12.33*. Трубопроводы сжиженных газов должны сооружаться из труб, изготовленных по специальным техническим условиям, утвержденным в установленном порядке. 12.34*. На переходах трубопроводов через проселочные и лесные дороги должны предусматриваться решения по защите трубопроводов от повреждения (прокладка в защитных металлических футлярах, покрытие железобетонными плитами и др.). 12.35*. Подводные переходы трубопроводов через судоходные и сплавные водные преграды должны быть, как правило, конструкции «труба в трубе».
13. МАТЕРИАЛЫ И ИЗДЕЛИЯ
ОБЩИЕ ПОЛОЖЕНИЯ
13.1. Материалы и изделия, применяемые для строительства магистральных трубопроводов, должны отвечать требованиям государственных стандартов, технических условий и других нормативных документов, утвержденных в установленном порядке, а также требованиям настоящего раздела. 13.2. Материалы и изделия для строительства объектов связи, электроснабжения, автоматики, водоснабжения, канализации и других технологических трубопроводов следует выбирать согласно строительным нормам и правилам на соответствующие сооружения.
ТРУБЫ И СОЕДИНИТЕЛЬНЫЕ ДЕТАЛИ
13.3*. Для строительства магистральных трубопроводов должны применяться трубы стальные бесшовные, электросварные прямошовные, спирально-шовные и других специальных конструкций, изготовленные из спокойных и полуспокойных углеродистых и низколегированных сталей диаметром до 500 мм включ., из спокойных и полуспокойных низколегированных сталей диаметром до 1020 мм и низколегированных сталей в термически или термомеханически упрочненном состоянии для труб диаметром до 1420 мм. Трубы бесшовные следует применять по ГОСТ 8731-87, ГОСТ 8732-78 и ГОСТ 8733-87, ГОСТ 8734-75 - группы В и при соответствующем технико-экономическом обосновании по ГОСТ 9567— 75, трубы стальные электросварные — в соответствии с ГОСТ 20295—85 для труб диаметром до 800 мм включ. и техническими условиями, утвержденными в установленном порядке, — для труб диаметром свыше 800 мм с выполнением при заказе и приемке труб требований, изложенных в пп. 13.4-13.17. Допускается применение импортных труб, соответствующих требованиям настоящего раздела. 13.4. Трубы должны иметь сварное соединение, равнопрочное основному металлу трубы. Сварные швы труб должны быть плотными, непровары и трещины любой протяженности и глубины не допускаются. 13.5. Отклонения от номинальных размеров наружных диаметров торцов труб на длине не менее 200 мм не должны превышать для труб диаметром до 800 мм включ. величин, приведенных в соответствующих государственных стандартах, по которым допускается применение труб для магистральных трубопроводов, а для труб диаметром свыше 800 мм ± 2 мм. Овальность концов труб (отношение разности между наибольшим и наименьшим диаметром в одном сечении к номинальному диаметру) не должна превышать 1 %. Овальность труб толщиной 20 мм и более не должна превышать 0,8 %. 13.6. Кривизна труб не должна превышать 1,5 мм на 1 м длины, а общая кривизна — не более 0,2 % длины трубы. 13.7. Длина поставляемых заводом труб должна быть в пределах 10,5—11,6 м. 13.8. Трубы должны быть изготовлены из стали с отношением предела текучести к временному сопротивлению не более: 0,75 — для углеродистой стали; 0,8 — для низколегированной нормализованной стали; 0,85 — для дисперсионно-твердеющей нормализованной и термически упрочненной стали; 0,9 — для стали контролируемой прокатки, включая бейнитную. Трубы диаметром 1020 мм и более должны изготавливаться из листовой и рулонной стали, прошедшей 100%-ный контроль физическими неразрушающими методами. 13.9. Относительное удлинение металла труб на пятикратных образцах должно быть, %, не менее: 20 - для труб с временным сопротивлением до 588,4 МПа (60 кгс/мм2 ); 18 - для труб с временным сопротивлением до 637,4 МПа (65 кгс/мм2); 16 — для труб с временным сопротивлением 686,5 МПа (70 кгс/мм2) и выше. 13.10. Ударная вязкость на образцах Шарпи и процент волокна в изломе основного металла труб со стенками толщиной 6 мм и более должны удовлетворять требованиям, приведенным в табл. 21. Ударную вязкость следует определять по ГОСТ 9454-78 на образцах типов 11-13.
Таблица 21
Процент волокна в изломе следует определять для металла газопроводов на полнотолщинных образцах высотой: 75 мм для номинальной толщины стенки труб 10 мм и более; 50 мм — для номинальной толщины стенки труб менее 10 мм. Ударную вязкость на образцах Менаже следует определять при температуре минус 40°С, для районов Крайнего Севера - при минус 60 °С и принимать в зависимости от толщины стенки труб по табл. 22. Определение ударной вязкости на образцах Менаже для основного металла труб из термически упрочненной стали и стали контролируемой прокатки не является обязательным. Образцы из основного металла для определения ударной вязкости на образцах Менаже изготовляются в соответствии с ГОСТ 9454-78 типов 1-3. Образцы из сварного соединения должны изготовляться в соответствии с ГОСТ 6996-66. 13.11*. Кольцевые сварные соединения должны выполняться с применением дуговых методов сварки, в том числе — ручной, автоматической под флюсом, механизированной в среде защитных газов, механизированной самозащитной порошковой проволокой, а также электроконтактной сваркой оплавлением. Сталь труб должна хорошо свариваться дуговыми методами и электроконтактной сваркой. Эквивалент углерода металла [С]э низкоуглеродистых низколегированных сталей, независимо от состояния их поставки — горячекатаные, нормализованные и термически упрочненные — определяется по формуле
, (64)
Таблица 22
Величина эквивалента углерода углеродистых марок стали, например, Ст.3, а также стали 10, 20 и низколегированной стали, только с кремнемарганцевой системой легирования, например, марок 17 ГС, 17Г1С, 09Г2С), рассчитывается по формуле
. (65)
Сu, Ni, Сr содержащиеся в трубных сталях как примеси, при подсчете не учитываются. Величина [С]э не должна превышать 0,46. Фактическую величину эквивалента углерода следует включать в сертификат и обозначать на каждой трубе. 13.12. Пластическая деформация металла в процессе производства труб (экспандирования) должна быть не более 1,2 %. 13.13. В металле труб не допускается наличие трещин, плен, рванин, закатов, а также расслоений длиной свыше 80 мм в любом направлении. Расслоения любого размера на торцах труб и в зоне шириной 25 мм от торца труб не допускаются. Зачистка внешних дефектов труб (кроме трещин) допускается при условии, что толщина стенки труб после зачистки не выходит за пределы допусков на толщину стенки. 13.14. Сварные соединения труб должны иметь плавный переход от основного металла к металлу шва без острых углов, подрезов, непроваров, утяжин, осевой рыхлости и других дефектов формирования шва. Усиление наружного шва должно находиться в пределах 0,5—2,5 мм для труб со стенкой толщиной до 10 мм включ. и 0,5—3,0 мм для труб со стенкой толщиной свыше 10 мм. Высота усиления внутреннего шва должна быть не менее 0,5 мм. На концах труб на длине не менее 150 мм усиление внутреннего шва должно быть снято до высоты 0-0,5 мм. Смещение наружного и внутреннего слоев заводского сварного шва не должно превышать 20 % толщины стенки при номинальной толщине до 16 мм и 15%— более 16 мм. Отклонение участка трубы длиной 200 мм со сварным соединением от окружности не должно превышать 0,15% номинального диаметра трубы. Смещение свариваемых кромок не должно превышать 10 % номинальной толщины стенки. 13.15. Концы труб должны быть обрезаны под прямым углом и иметь разделку кромок под сварку. Форма разделки кромок определяется техническими условиями, утвержденными в установленном порядке. Косина реза торцов труб должна быть не более 2 мм. 13.16. Каждая труба должна проходить на заводах-изготовителях испытания гидростатическим давлением ри, МПа, в течение не менее 20 с, величина которого должна быть не ниже давления, вызывающего в стенках труб кольцевое напряжение, равное 95 % нормативного предела текучести. При величине испытательного давления на заводе-изготовителе менее требуемой должна быть гарантирована возможность доведения гидравлического испытания при строительстве до давления, вызывающего напряжение, равное 95 % нормативного предела текучести. Величина ри на заводе для всех типов труб должна определяться по величине нормативного предела текучести по формуле
, (66)
3.17. Все сварные соединения труб должны быть полностью проверены физическими неразрушающими методами контроля (ультразвуком с последующей расшифровкой дефектных мест рентгеновским просвечиванием). Сварные соединения на концах труб на длине 200 мм должны проходить дополнительный рентгеновский контроль. 13.18. Соединительные детали трубопроводов — тройники, переходники, отводы и днища (заглушки) — должны изготавливаться в соответствии с государственными или отраслевыми стандартами или техническими условиями, утвержденными в установленном порядке, из труб или листовой стали. Сталь в готовых соединительных деталях должна удовлетворять требованиям пп. 13.8, 13.9, 13.11 и 13.13. Ударная вязкость основного металла и сварных швов должна соответствовать требованиям табл. 22. Требования к ударной вязкости для соединительных деталей диаметром 57—219 мм не регламентируются. 13.19*. Для магистральных трубопроводов и коллекторов, обвязочных трубопроводов КС и НПС должны применяться следующие конструкции соединительных деталей: тройники горячей штамповки; тройники штампосварные с цельноштампованными ответвлениями горячей штамповки; тройники сварные без специальных усиливающих элементов (ребер, накладок и т.д.) и тройники сварные, усиленные накладками; переходники конические, концентрические штампованные или штампосварные; отводы гнутые гладкие, изготовленные из труб путем протяжки в горячем состоянии, гнутые при индукционном нагреве или штампосварные из двух половин; отводы сварные секторные; заглушки эллиптические. 13.20. Соединительные детали должны удовлетворять следующим требованиям: длина сварных тройников должна быть равна не менее, чем двум диаметрам ответвления; длина ответвления неусиленных сварных тройников должна быть не менее половины диаметра ответвления, но не менее 100 мм; ширина накладки усиленного тройника на магистрали и на ответвлении должна быть не менее 0,4 диаметра ответвления, а толщина накладок приниматься равной толщине стенки усиливаемого элемента. Для усиленных накладками тройников с отношением диаметра ответвления к диаметру магистрали менее 0,2 накладки не предусматриваются, а с отношением менее 0,5 накладки не предусматриваются на ответвлении. Расстояние от накладки до торца тройника должно быть не менее 100 мм. Общая длина цельноштампованных тройников должна быть не менее Dо + 200 мм, а высота ответвления — не менее 0,2 Dо. но не менее 100 мм. Радиус закругления в области примыкания ответвления должен быть не менее 0,1 Dо. Длина секторов сварных отводов по внутренней образующей должна быть не менее 0,15D). Длина переходников должна удовлетворять условию
, (67)
Кромки соединительных деталей должны быть обработаны в заводских условиях для присоединения к привариваемым трубам без переходных колец (с учетом требований п. 13.28) . Эллиптические днища должны иметь следующие размеры: высоту Н ³ 0,4 D; высоту цилиндрической части —0,1D; радиус сферической части — р ³ D; радиус перехода цилиндрической части к сферической r £ D (где D— наружный диаметр трубы). 13.21. Толщина стенок деталей определяется расчетом и должна быть не менее 4 мм. 13.22. Конденсатосборники должны быть из труб и деталей заводского изготовления. Диаметр и толщина стенок конденсатосборников определяются расчетом. Конденсатосборники должны быть покрыты антикоррозионной изоляцией, соответствующей изоляции трубопровода на данном участке, и подвергнуты предварительному гидравлическому испытанию на давление, равное полуторному рабочему давлению в газопроводе. 13.23. При изготовлении сварных деталей должна применяться многослойная сварка с обязательной подваркой корня шва деталей диаметром 300 мм и более. После изготовления сварные детали должны быть подвергнуты контролю ультразвуком или рентгеном. Термообработке (высокотемпературному отпуску для снижения уровня остаточных напряжений) подлежат все: соединительные детали независимо от номенклатуры, марок стали, рабочего давления и т. д. со стенками толщиной 16 мм и более; соединительные детали независимо от номенклатуры, толщины стенок и т.д. из низколегированных сталей марок 10ХСНД, 15ХСНД, 14ХГС, 09Г2С или аналогичным им, а также из сталей с нормативным временным сопротивлением разрыву 550 МПа (55 кгс/мм2) и выше; тройники независимо от марки стали, толщины стенок, рабочего давления и т. д. с отношением Dо/Dм свыше 0,3. Соединительные детали должны испытываться гидравлическим давлением, равным 1,3 рабочего давления для деталей, монтируемых на линейной части трубопроводов, и 1,5 - для деталей трубопроводов категорий В. 13.24. Для изолирующих фланцевых соединений следует использовать фланцы по ГОСТ 12821—80. Сопротивление изолирующих фланцев (в сборе) во влажном состоянии должно быть не менее 103 Ом. 13.25. Диаметр отверстий во фланцах под крепежные детали и размеры впадины, выступа, а также длина этих крепежных деталей должны выбираться с учетом толщины изолирующих (диэлектрических) втулок и прокладок. К каждому из фланцев изолирующего соединения должен быть приварен изолированный контактный вывод из стальной полосы размером 30´6 мм. 13.26. Конструкция запорной, регулирующей и предохранительной арматуры должна обеспечивать герметичность, соответствующую I классу по ГОСТ 9544-93. 13.27*. Запорная арматура диаметром свыше 400 мм должна иметь опорные лапы для установки на фундамент. Материалы, применяемые для изготовления арматуры, должны обеспечивать надежную и безопасную ее эксплуатацию. 13.28. Разделка кромок присоединительных концов деталей и арматуры должна удовлетворять условиям сварки. В тех случаях, когда стали соединяемых труб, деталей или арматуры имеют разные значения пределов прочности, для обеспечения равнопрочности монтажных соединений необходимо соблюдать условие
, (68)
При невозможности выполнения этих требований, а также при разности толщин присоединяемых концов арматуры или деталей и трубы, отличающихся более чем в 1,5 раза, необходимо предусматривать переходные кольца.
СВАРОЧНЫЕ МАТЕРИАЛЫ
13.29. Для ручной электродуговой сварки стыков трубопроводов должны применяться электроды с целлюлозным (Ц) и основным (Б) видами покрытий по ГОСТ 9466-75 и ГОСТ 9467-75. Выбор типа электродов должен производиться в соответствии с табл. 23.
Таблица 23
13.30. Для автоматической сварки стыков труб под флюсом должны применяться флюсы по ГОСТ 9087—81 и проволоки углеродистые или легированные преимущественно с омедненной поверхностью по ГОСТ 2246-70. 13.31. Сочетания марок флюсов и проволок в зависимости от конкретного назначения и нормативного сопротивления разрыву металла свариваемых труб выбираются в соответствии с действующими технологическими инструкциями, утвержденными в установленном порядке. 13.32. Для автоматической газоэлектрической сварки стыков труб должны применяться: сварочная проволока с омедненной поверхностью по ГОСТ 2246-70. углекислый газ по ГОСТ 8050-85 (двуокись углерода газообразная); аргон газообразный по ГОСТ 10157—79; смесь из углекислого газа и аргона. 13.33. Для механизированной сварки стыков труб применяются самозащитные порошковые проволоки, марки которых следует выбирать в соответствии с действующими технологическими инструкциями, утвержденными в установленном порядке. 13.34. Для газовой резки труб должны применяться: кислород технический по ГОСТ 5583—78; ацетилен в баллонах по ГОСТ 5457—75; пропан-бутановая смесь по ГОСТ 20448-90.
ИЗДЕЛИЯ ДЛЯ ЗАКРЕПЛЕНИЯ ТРУБОПРОВОДОВ ПРОТИВ ВСПЛЫТИЯ
13.35. Для закрепления (балластировки) трубопроводов, прокладываемых через водные преграды, на заболоченных и обводненных участках, должны предусматриваться утяжеляющие навесные и кольцевые одиночные грузы, скорлупообразные грузы, сплошные утяжеляющие покрытия, балластирующие устройства с использованием грунта и анкерные устройства. В особо сложных условиях Западной Сибири и Крайнего Севера при соответствующем обосновании для балластировки подводных переходов трубопроводов диаметром 1020 мм и более в русловой части допускается применять чугунные кольцевые грузы. 13.36. Все изделия, применяемые для закрепления трубопроводов, должны обладать химической и механической стойкостью по отношению к воздействиям среды, в которой они устанавливаются. 13.37. Навесные утяжеляющие одиночные грузы должны изготовляться в виде изделий из бетона, особо тяжелых бетона и железобетона и других материалов с плотностью не менее 2200 кг/м3 (для особо тяжелых бетонов не менее 2900 кг/м3 ). Каждый груз подлежит маркировке масляной краской с указанием массы и объема груза, а грузы, предназначенные для укладки в агрессивную среду маркируются дополнительным индексом.
Примечание: Агрессивность среды и требования к защите бетонных грузов и сплошного обетонирования трубы определяются в соответствии с требованиями СНиП 2.03.11-85.
13.38. Номинальная масса утяжеляющего бетонного груза устанавливается проектом. 13.39. Кольцевые одиночные утяжеляющие грузы должны изготавливаться из чугуна ( с учетом требований п. 13.35), из железобетона или других материалов в виде двух половин с плотностью согласно п. 13.37. Каждый полугруз подлежит маркировке масляной краской с указанием массы и наружного диаметра, для которого предназначен этот груз. 13.40. Скорлупообразные грузы следует предусматривать из железобетона в виде продольных частей цилиндрической оболочки, при этом требования к бетону должны соответствовать требованиям п. 13.37. 13.41. Анкерные устройства изготавливаются из чугуна или стали, обеспечивающих механическую прочность и возможность соединения их между собой.
МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ ДЛЯ ПРОТИВОКОРРОЗИОННЫХ ПОКРЫТИЙ ТРУБОПРОВОДОВ
13.42. Для противокоррозионных покрытий трубопроводов следует применять материалы по ГОСТ, ТУ, приведенным в табл. 24.
Таблица 24
ПРИЛОЖЕНИЕ Рекомендуемое
ГРАФИК ДЛЯ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НЕСУЩЕЙ СПОСОБНОСТИ ТРОЙНИКОВ hв
1 — для сварных без усиливающих накладок; 2 — для штампованных и штампосварных; 3 — для тройников с усиливающими накладками
СОДЕРЖАНИЕ 1. Общие положения 2. Классификация и категории магистральных трубопроводов 3. Основные требования к трубопроводам 4. Конструктивные требования к трубопроводам Размещение запорной и другой арматуры на трубопроводах 5. Подземная прокладка трубопроводов Прокладка трубопроводов в горных условиях Прокладка трубопроводов в районах шахтных разработок Прокладка трубопроводов в сейсмических районах Прокладка трубопроводов в районах вечномерзлых грунтов 6. Переходы трубопроводов через естественные и искусственные препятствия Подводные переходы трубопроводов через водные преграды Подземные переходы трубопроводов через железные и автомобильные дороги 7. Надземная прокладка трубопроводов 8. Расчет трубопроводов на прочность и устойчивость Расчетные характеристики материалов Нагрузки и воздействия Определение толщины стенки трубопроводов Проверка прочности и устойчивости подземных и наземных (в насыпи) трубопроводов Проверка прочности и устойчивости надземных трубопроводов Компенсаторы Особенности расчета трубопроводов, прокладываемых в сейсмических районах Соединительные детали трубопроводов 9. Охрана окружающей среды 10. Защита трубопроводов от коррозии Защита трубопроводов от подземной коррозии защитными покрытиями Защита надземных трубопроводов от атмосферной коррозии Электрохимическая защита трубопроводов от подземной коррозии Электрохимическая защита трубопроводов в районах распространения вечномерзлых грунтов 11. Линии технологической связи трубопроводов 12. Проектирование трубопроводов сжиженнных углеводородных газов 13. Материалы и изделия Общие положения Трубы и соединительные детали Сварочные материалы Изделия для закрепления трубопроводов против всплытия Материалы, применяемые для противокоррозионных покрытий трубопроводов Приложение. Рекомендуемое. График для определения коэффициента несущей способности тройников hв |
Часть 1 | Часть 2 | Часть 3 | Часть 4 | Часть 5 | Часть 6 | Часть 7
Хотите оперативно узнавать о новых публикациях нормативных документов на портале? Подпишитесь на рассылку новостей!