Часть 1 | Часть 2 | Часть 3 | Часть 4 | Часть 5 | Часть 6 | Часть 7 | Часть 8 | Часть 9 | Часть 10
Пособие к СНиП 2.03.11-85 по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций Часть 10
ПРИЛОЖЕНИЕ 9 Химическая стойкость материалов для покрытия полов
ПРИЛОЖЕНИЕ 10 Требования к источникам блуждающих токов отделений электролиза Общие указания 1. Выпрямители преобразовательных подстанций электролизных цехов на стороне постоянного тока должны быть надежно изолированы от земли и строительных конструкций. Сопротивление изоляции обеих шин выпрямителя относительно земли при отключенной электролизной установке должно быть не ниже 0,5 МОм. 2. При многорядовом расположении электролизных установок подключение их к выпрямителям рекомендуется выполнять так, чтобы соседние электролизные установки были обращены друг к другу участками одинаковой полярности. 3. Шины, технологические трубопроводы, желоба, как металлические, так и выполненные из неэлектропроводных материалов, должны быть изолированы от строительных конструкций воздушными зазорами не менее 50 мм, а от заземленного оборудования (баков, насосов и т. п.) и стоек под оборудование, не защищенных специальной оклеечной изоляцией, — зазорами не менее 200 мм. 4. Все проемы в местах пересечения шин и металлических трубопроводов с железобетонными конструкциями оборудуются гильзами и вставками из электроизоляционных материалов. 5. Для крепления трубопроводов и шин рекомендуется применять кронштейны из электроизоляционных материалов (например, армированного винипласта) (рис. 1) или металлические кронштейны и подвески с изоляцией в двух точках (рис. 2). Крепление кронштейнов к железобетонным конструкциям следует осуществлять с помощью обжимных хомутов, накладываемых на бетонную поверхность конструкции. Рис. 1. Примеры выполнения держателей из электроизоляционных материалов для крепления трубопроводов а — к балке; б — к колонне; 1 — железобетонная балка; 2 — железобетонная колонна; 3 — держатель из электроизоляционных материалов; 4 — трубопровод Рис. 2. Примеры выполнения металлических держателей для крепления трубопроводов а — с электроизоляционной вставкой в подвеске и в местах крепления хомута к железобетонной конструкции; б — с двумя электроизоляционными вставками в подвеске; 1 — железобетонная конструкция; 2 — металлический держатель; 3 — изолятор; 4 — трубопровод; 5 — изоляционная прокладка Крепления и подвески, пропускаемые через железобетонные конструкции, не рекомендуются. При вынужденном использовании таких креплений и подвесок места контакта с железобетонными конструкциями должны оборудоваться электроизоляционными вставками (рис. 3) или закладные детали креплений должны устанавливаться на полимерном клее. Рис. 3. Пример подвесок типа шпильки для крепления технологических трубопроводов а — одиночного; б — нескольких; 1 — железобетонная конструкция; 2 а, б, в — конструкция пола (а — бетонное основание пола; б — химически стойкая гидроизоляция, в — покрытие пола); 3 — диэлектрическая гильза; 4 — металлическая тяга; 5 — изолятор; 6 — изоляционная прокладка; 7 — трубопровод; 8 — поддерживающая конструкция Примечание. При выборе материала для кронштейнов следует учитывать теплостойкость материала. 6. Железобетонные конструкции не должны иметь контакта с подземными шпунтами или подземными металлическими контурами (грозозащитными, дренажными и др.). Отделения электролиза водных растворов 7. Для изоляции электролизеров, шин, трубопроводов и другого технологического оборудования рекомендуется применять подвесные и опорные изоляторы зонтичного типа для наружных установок на соответствующие механические нагрузки и напряжение 3 — 6 кВ. 8. Рекомендуется технологические трубопроводы крепить через изоляционные подвески к элементам электролизных ванн, избегая креплений к железобетонным конструкциям (рис. 4). Рис. 4. Схема подвески технологических трубопроводов к конструкциям электролизных ванн а — подвеска и трубопровод из электроизоляционного материала; б — металлические подвеска и трубопровод; 1 —электролизная ванна; 2 — подъемная петля; 3 — изолятор; 4 — подвеска из пластиката; 5 — винипластовый трубопровод; 6 — металлическая подвеска; 7 — металлический трубопровод; 8 — железобетонная колонна; 9 — железобетонная балка 9. Трубопроводы и желоба, по которым транспортируют электролит и продукты электролиза, должны, как правило, выполняться из неэлектропроводных материалов (фторопласт, стеклопластики, фаолит и др.). 10. Металлические трубопроводы, соединяемые с электролизерами, могут применяться только при соблюдении следующих условий: а) внутренняя поверхность металлических труб должна быть гуммирована или защищена другими электроизоляционными и химически стойкими покрытиями; монтаж трубопроводов осуществляется с электроизоляцией стыков; при применении титановых или других металлических трубопроводов, обладающих высокой коррозионной стойкостью и используемых без защиты внутренней поверхности, уменьшение блуждающих токов должно быть выполнено по специальному проекту; б) соединение с электролизерами должно осуществляться трубами и шлангами из неэлектропроводных материалов длиной не менее 3 м; уменьшение длины вставок до 1 м возможно на газопроводах при условии выполнения вставок из фторопласта-4; в) соединение рядовых трубопроводов (коллекторов) со сборным трубопроводом должно производиться трубами из неэлектропроводных материалов длиной не менее 6 м во всех случаях, кроме газопроводов, соединение которых с электролизерами выполняется с помощью вставок из фторопласта-4; г) на всех металлических трубопроводах в местах перехода из грунта в электролизное отделение должны устанавливаться электроизолирующие вставки для разрыва цепи тока по трубопроводу. 11. Для разрыва струи поступающего и вытекающего электролита рекомендуется снабжать электролизеры капельницами и другими устройствами. 12. Ввод электролита в коллекторы и вывод продуктов электролиза из коллекторов электролизной установки, а также присоединение технологического оборудования к электролизной установке необходимо осуществлять в местах с наименьшим потенциалом относительно земли ближе к нейтральной точке (рис. 5, 6). Рис. 5. Схема ввода электролитов в коллекторы электролизной установки, обладающая минимальными токами утечки а, б, в — схемы с двумя, четырьмя и шестью рядами электролизеров соответственно; 1 — труба ввода электролита в цех; 2 — труба ввода электролита в коллектор; 3 — рядовой коллектор электролита; 4 — вентиль; 5 — электролизеры Рис. 6. Схемы присоединения технологического оборудования к электролизной установке с уменьшенными токами утечки а — схема с двумя рядами электролизеров и общим сборным баком; б — схема с четырьмя рядами электролизеров и двумя сборными баками; в, г — схема с четырьмя рядами электролизеров и одним сборным баком; 1 — сборный бак электролита; 2 — отводящий трубопровод; 3 — рядовой коллектор с электролитом; 4 — электролизеры 13. Технологическое оборудование необходимо располагать в цехе и подключать к электролизной установке симметрично относительно середины электролизной установки. 14. Каждый ряд электролизеров должен иметь индивидуальные коллекторы или желоба, транспортирующие входящие электролиты и продукты электролиза. 15. Катодная, дренажная и протекторная защита оборудования электролизных установок может быть применена только после специальных проектных разработок и экспериментальных исследований, подтверждающих, что применение защиты уменьшает ток утечки через защищаемый участок и не приводит к резкому увеличению тока утечки на незащищенных участках. Отделения электролиза расплавов Напольные металлические решетки, находящиеся под потенциалом катода электролизера, должны быть электроизолированы от несущих строительных конструкций. В отделениях электролиза расплавов солей аммония допускается использовать в качестве электроизоляционных материалов: ацеид, асбокартон, асбест (в сухом состоянии). ПРИЛОЖЕНИЕ 11 Схема электрозащиты блочной железобетонной конструкции Схему электродренажной защиты (рис. 1, а) рекомендуется предусматривать для железобетонных конструкций, расположенных в знакопеременных зонах потенциалов электрифицированных рельсовых путей, в которых преобладают по величине и времени катодные значения потенциалов более 1 В. Схему катодной защиты (рис. 1, б) рекомендуется предусматривать для железобетонных конструкций, расположенных в анодных зонах потенциалов электрифицированных рельсовых путей. При этом в случае необходимости глухого соединения блочных конструкций между собой соединения должны выполняться в соответствии с рис. 2.
Рис. 1. Схемы защиты блочной железобетонной конструкции а — электродренажная защита; б — катодная защита; в — протекторная защита; 1 — отдельный железобетонный блок; 2 — арматурный каркас блока; 3 ¾ регулируемая вентильная перемычка; 4 — рельсовый путь электрифицированной железной дороги и потенциальная диаграмма; 5 — дренажный кабель; 6 — устройство электрического дренажа; 7 — регулируемая перемычка; 8 — источник постоянного тока (катодная станция); 9 — анодное заземление; 10 — диод; 11 — протектор рис. 2. Общий вид перемычки между арматурой смежных секций труб 1 — стальная полоса 10´60 мм; 2 — битум марки IV; 3 — закладные части, установленные на арматурном каркасе Схему протекторной защиты (см. рис. 1) рекомендуется предусматривать для железобетонных конструкций, расположенных в знакопеременных зонах потенциалов при значениях потенциалов «рельс-земля» в пределах ±1 В. ПРИЛОЖЕНИЕ 12 Усредненные исходные параметры для предварительной оценки экономической эффективности антикоррозионной защиты железобетонных конструкций Таблица 1 Усредненные показатели стоимости конструкций, изделий, материалов и удельных капитальных вложений в организацию их производства
Таблица 2 Ориентировочные данные (соотношения) для определения стоимости эксплуатационных затрат основных строительных конструкций в агрессивных средах
Таблица 3 Ориентировочная продолжительность капитального ремонта железобетонных конструкций (на 1 м бетона конструкций)
Таблица 4 Ориентировочная стоимость производственных зданий и размещенного в них технологического оборудования, простой которого возможен при производстве капитального ремонта строительных конструкций (на 1 м2 общей площади здания)
Таблица 5 Значения суммарных коэффициентов m для приведения разновременных эксплуатационных затрат и издержек
|
Часть 1 | Часть 2 | Часть 3 | Часть 4 | Часть 5 | Часть 6 | Часть 7 | Часть 8 | Часть 9 | Часть 10
Хотите оперативно узнавать о новых публикациях нормативных документов на портале? Подпишитесь на рассылку новостей!
Все СНиПы >> СНиПы «Теплоизоляция, гидроизоляция, звукоизоляция, клеи >>